close
Workout Routines For Beginners

Welcome to

Workout Routines For Beginners


By Workout Routines For Beginners


Workout Routine Wallpaper



(Note: If anyone has any questions about the construction process, or has tips on building their own Machines to share, please leave them in the comments section of this post.)
I’ve been wanting to study Radionics for some time, but I was never sufficiently motivated to expend the time and/or money to obtain a Radionics machine. While I can entertain the possibility of Radionics actually working, I never thought much of the Psionics idea of drawing pictures of machines and using cardboard cutouts for dials to practice Radionics – I’m an audio engineer by trade and I just couldn’t be comfortable with fake knobs. Or real knobs that I knew weren’t actually connected to anything (like so many Radionics devices I’ve seen advertised.)

If you’re going to do something, do it right! What I didn’t realize when I first set out to build this amazing machine that it was going to evolve from a weird science experiment to an expression of Art.

For Radionics to work, we’re told, the operator has to have a special rapport with his or her machine. So I set out to build the kind of machine that would work for me – something artistically beautiful and stylish as well as functional, with well-crafted details and smooth, accurate controls.

Early Tube Radio ca. 1915

As a kind of retro-tech geek, I’ve always loved the look and feel of antique electronic devices and artistic Steampunk machine creations. Early electronic medical devices were often gorgeous works of industrial art and craft. Most Radionics machines sold today are either an “utilitarian” machine in a plain box or a briefcase, or an ultra-modern, sleek plastic box built with exotic materials, holographic panel art and rows of blinking LED lights. And computer interfaces. No, I wanted to go “old school”, and make something I could be proud of as a work of art, reminiscent of the fine handcrafted electrical machines of the early 20th century.

The inner circuitry of the Hieronymus Radionic Analyzer is based on the 1980s circuit design of noted radionics researcher Dr. T. Galen Hieronymus.  The plans are available for free on the Internet, from the private archivist of Dr. Hieronymus’s papers, William Jensen. Mr. Jensen provided the schematic diagrams and parts layouts I used in my construction, and my correspondence with him has been most helpful to me in this project. (Thanks, Bill!) He also sells his own hand-made construction of the Hieronymus Machine to the public for what is, believe me, a very reasonable price. Visit his website at for more information.

1950s Hieronymus Analyzer

The circuitry is intended to be a reproduction of the instrument based on the patents of Dr. Hieronymus. Though the circuitry is of a mid-20th century design using transistors (Dr. Hieronymus’s last design before he died at the tragically young age of ninety-five), the exterior is an original design, hand crafted in the style of late-19th and early 20th century electrical devices. Also, I feel much more comfortable connecting my body to a low-DC voltage transistorized circuit than a high-AC voltage vacuum tube circuit!

Even the acquisition of the many of the components became a process of happenstance, synchronicity and luck.

The Exterior of the Analyzer

The mysterious wooden box I got at a swap meet, and even the person who sold it to me had no idea what it was originally made for. Larger than a common jewelry box, it’s the size of a small tobacco humidor or Victorian tea caddy, but there was no evidence that it ever had any compartments built into it (nor did it smell like tobacco or tea); it was completely plain and painted black inside. It’s rather large (8” x 10.5”) for a “craft box”, the kind wood hobbyists buy for projects, and the finishing is very professional. The sides are 3/8” solid wood with what I think is a cherrywood veneer. But the hinges it had seemed added as an afterthought – the wood was crudely mortised to fit and the cheap hinges installed slightly crooked. The lid was too heavy for the hinges to support when open, and they were working loose.

I told my wife I couldn’t imagine what the box was made for, and she replied, “it was made for you.” OK, we’ll leave it at that.

Air-tuned capacitor

The basic electronic parts like potentiometers, resistors, diodes, circuit boards and the like came from electronics shops. (Some on-line, some not.) Things like a 10-turn 100k ohm pot and the two air capacitor tuning coils are specialized components and had to come from electronic specialty suppliers. The air-tuned capacitors for the Rate controls were the trickiest parts to find, and even then I had to settle for a compromise. Without going into too much detail, air caps work by use of two or more stacks of semi-circular metal plates that mesh with each other when rotated on a shaft. Finding the kind that are “enmeshed” when the shaft is turned clockwise is extremely rare; generally air capacitors are only used for building DIY crystal radios these days, and they are almost always enmeshed when turned counter-clockwise. But the design requires that “100” Rate setting on the dial is when they are fully enmeshed. So I set the dial scales up so that “100” is fully counter-clockwise, and“0” is fully clockwise – the reverse of standard left-to-right dial rotation. But I realized it doesn’t matter which way you have to turn it, so long as it’s accurate. And I kind of like the heretical vibe I get from having “backwards” dials.

Bakelite knob

Another problem was finding the knobs, which are more than just handles for the controls, but active components themselves. I wanted antique “hex-fluted” knobs made of Bakelite (more on that below), as these were the kind used in the first radionics machines like the Abrams Reflexophone, for that “authentic imitation retro” look. But they also have to have conductive metal pointers that are electrically connected to the shafts. The plans stressed how important this was for the machine to operate. The other requirement is that they be very sharp at the points so accurate numbers can be dialed in on an analog scale.

I found the smaller Intensity knob on E-bay, from an Australian ham radio hobbyist (he actually sold me two.) It already had the proper metal pointer. But no matter how much I searched, I couldn’t find a larger matching version. I did manage to find two larger knobs of a matching style from an on-line antique radio restoration supplier, but without pointers. So for the first version of the Machine I built, I used metal clock hands and soldered them to the metal shaft nuts under the knobs. It worked, but I wasn’t happy with it because they were not very “pointy” and didn’t match the Intensity pointer. I later upgraded the pointers with custom made versions (See below.)

The only other thing was I wanted all the metal parts to be brass, but the Intensity pointer seemed to be white metal. But examining it closely I realized it was actually brass with an outer plating of nickel (very common with electronic parts.) Some sanding and polishing revealed the brass, and then all the knobs and pointers matched.

So the box itself was ready!

With the woodworking out of the way, I could turn to the electronics. Bill Jensen provides an etching “mask” for producing a printed circuit board, but I’m not fond of having to do acid-etching (the vile, dangerous chemicals, for one thing.) Since the wiring is actually pretty simple, I used a blank, pre-drilled circuit board, stuck all the leads through the holes and did point-to-point wiring of the electronics. (Basically hook everything together with short jumper wires.) Again, this is the very old-school turn-of-the-19th-century electronics way, as they did it before there were printed circuit boards.

Interior of the Analyzer

So I mounted the transistors and resistors to the board, leaving space to mount the coil on it later – I used a pretty big circuit board, and it could certainly be made smaller, but I wanted lots of space to work with, since it was the first time I’d made one of these. In fact, I ended up not using the space anyway after the first main modification – but more about that later.

I wanted everything to be mounted on the control panel itself, not to the insides of the box. That way, it’s taken apart by simply lifting out the control panel, and it all the circuitry comes with it. Except, in this case, the power cable. I had to install a DC power connector pair so the power line could be easily disconnected inside for lifting it all out.

I had L-bracket terminal strips lying around (any L-bracket would work) so I mounted the circuit board to one of those, and later I simply glued it to the underside of the control panel with epoxy, instead of running nuts-and-bolts through the panel surface.

All the components like switches and potentiometer mounted through their respective holes. I used an LED pilot light assembly from Radio Shack for the power light, but I stuck it inside a nice crystal “jewel” lens and bezel scavenged from an old guitar amp to give it the retro look.

The air caps were a bit of a challenge though. The threaded mounting holes for air caps are through the body of the unit itself, and usually the screws need to be custom cut to exact lengths (within 1/32 of an inch) so as to avoid snagging the rotating plates inside. Mounting it with screws through the control panel was tricky and if I did it wrong, it could be a serious setback. In Bill Jensen’s machines, he avoids the problem by using a big plexiglas mounting bracket on supports *under* the caps to hold them in place. But I had a smaller box space to work with and wanted to avoid all the extra fabrication work.

Finally a friend suggested to use double-sided tape instead of screws. So I got the strongest industrial mounting tape made and stuck the air caps to the underside of the panel with it. It’s wickedly strong stuff – I doubt I could pry those caps off without breaking the panel. (Hopefully I’ll never have to!) Problem solved! I ended up using adhesives extensively in this project instead of screws and metal fasteners. There are a lot of very powerful, advanced adhesives made these days for gluing just about anything to anything. The only drawback is that it’s very permanent, although using silicon “goop” adhesive is quite strong enough for most things, but still can be scraped off and separated if necessary.

OK, components mounted to circuit board and panel, time to wind the coils. But first, you need something to wind them on.

Electronic coils are just insulated wire wrapped around a non-metallic cylindrical core. Typically cardboard, wood or PVC pipe are used, and the wire is wrapped around and around for a specified number of “turns” to get the characteristics desired. Coils intensify electro-magnetism into a cylindrical space, so they are used to amplify weak signals, among other uses. The wire I used is 26 gauge, low-oxygen, enameled copper “magnet wire”. It looks like bare copper wire, but it’s coated with a thin layer of clear enamel insulation, so it can touch other wires without shorting out. This means when it has to be connected to another wire, the end has to be heated and scraped clean to remove the enamel.

Jensen’s instructions call for the main coil to be wound on a short piece of wooden dowel, which I did. Then I mounted the dowel to the circuit board and ran the wires through the holes.

The next coil to wire is the one around the beaker that becomes the witness well. Normally, people building a Hieronymus machine use a standard 100 or 200 milliliter laboratory flask, but I wasn’t fond of the idea for two reasons: one, the flasks are always labelled on the side with measurement marks, and there is a spout on the top edge for pouring. Since the flask was never going to be used for measuring or pouring, those features were superfluous. And they would have spoiled the clean “vintage” look I was going for. But it’s not easy to find anything similar to substitute. I was lucky enough to be browsing through a salvage store (Urban Ore in Berkeley, CA) and happened on an old coffee cup which was a glass flask with a plastic holder and handle! It was a bit larger than I had originally planned for, but it was pyrex glass and free of marks or spouts. So I bought it for 50 cents and broke the plastic holder off.

When winding the wire around it, it helped to have my wife to hold the beaker and rotate it while I fed the wire, so I got a nice, tight coil. Then I covered the whole beaker with black electrical tape, which is made of vinyl, which happens to be an insulator of eloptic (as well as electric) energy. (The well is another thing that got modified later.)

With all the components prepared, the next thing was to mount them all and then connect them with wires. It’s pretty straightforward if you can read a schematic diagram, but I labeled each point with a number to keep from getting confused. I used silver solder as recommended by Jensen. I made a mistake when I wired the three transistors and inadvertently installed them with the leads reversed. This had the result of them burning as soon as I applied the power to test the circuit! Once they were replaced and installed correctly, the circuit powered up properly.

First version of the Analyzer

The stick pad has a flat wound “bifular coil” under it (a bi-directional coil invented by Nikola Tesla) held in place by vinyl tape. I drilled four mounting holes in the corners an counter-sunk them so the screws would be flat to the surface, with rubber gaskets (the kind plumbers use in faucets) to hold it above the main surface.  Then I turned to decorating the control panel.

Using Photoshop, I created the front panel art, including lettering to label the controls. I spent a lot of time toying with fonts to use, finally deciding on a Copperplate font. The printed-out decals were easy to position while still wet, so getting them placed was fairly simple. Then I mounted the knobs on their shafts and screwed the control plate into the box. Done!

But not done…

The Machine was good looking but not everything I’d hoped for, artistically speaking. There were still some “modern” looking parts to it. The binding posts for the Input and Output connections were standard red and black “banana jack” plastic screw posts, the kind used to connect speakers to amplifiers. The decal labels didn’t have the look of etched panel lettering used in the early 20th century. So I decided to further modify the Machine to “version 2.0”.

Antique loop antenna

At first I used an AM radio “loop” antenna (the kind that comes with stereo receivers) which is perfectly functional but not a good artistic match with the machine. So I decided to make a reproduction of a classic wire loop antenna, as were used by old crystal sets and tube radios.

The simple form of a loop antenna is a mast with a cross piece, and the wire is wound around it in a spiral pattern (like a spider’s web). But the geometric shape doesn’t matter, so I went for a mast with eight “arms”, and it really ended up looking very much like a spider’s web. The hardest part was drilling out 12 holes in a straight line in each 3″ long arm, and tapping in the 48 brass brads. Then I glued each arm with epoxy to a 2″ circle of bakelite which I had marked with an octagon.

Octagon Loop Antenna

When that set, I mounted a small, thin quartz crystal in the center, glued the other bakelite circle on top, and filled the gaps with epoxy putty, smoothing it to a solid disk. I used a black granite base that came from an old bowling trophy to hold it, and mounted the last pair of the brass binding posts to the base. The antenna wires terminate at the disk, so a pair of knurled brass nuts attach cloth-covered vintage wires that run from the posts. I can disconnect the antenna from the base and they both fit into a small leather carrying case.

And for a final modification, I added black light!

With a Hieronymus Machine, the witness well (the glass container where samples are placed) must be “cleared” or “neutralized” after each use. The theory says that the Eloptic energy imprints or “signatures” of samples will linger in the well, and can get intermixed with new samples, giving confusing or even detrimental results. The operator must take great care in handling witness samples, so as not to get their own signatures mixed with the subject’s. Samples are handled with rubber gloves or tongs, and each container must itself be cleared before using it to hold a sample. Tongs, probes and anything else that comes into contact with a subject must be cleared before using it with the next subject. And the Machine itself is also cleared to “reset” it for the next subject. It’s pretty much the same typical testing lab procedures.

Clearing (Hieronymus called it “Neutralizing”) is done by throwing a switch which sends the power through the well’s coil, and shorts out the amplifying circuit to ground  – it’s the same as a demagnitizer used on old tape recorders. But I felt like I wanted some kind of indicator to show that the Clearing was happening.

I had also become fascinated with the old “Violet Ray” devices, and surmised that since ultra-violet energy is used to sterilize medical devices and food handling surfaces, it might do the same, at least symbolically, for the witness well. So I took apart the well (no easy task!) and mounted a small 360 nanometer ultraviolet LED directly under the bottom of the glass using a block of gray foam rubber. When switched on, it causes the whole well to glow in a deep purple light. Glass sample vials also glow purple, and a quartz crystal placed in the well fluoresces brightly!

There were other touches I added, like Victorian-style brass corners and a nice metal nameplate to the lid. Now I had a Radionics machine that was functional AND beautiful. I’ve received many compliments on its look, including from Radionics experts like Bill Jensen and Charles Cosimano.

I also built some other accessories for the system. I wound another coil like the stick-pad’s under a wooden craft disk, mounted a brass disk on the wood and a bakelite disc on the brass, which makes it a basic orgone accumlator. I use it for taking pendulum readings and as a treatment platform. The pendulum is a small orgone wand. The probes are brass electrodes with wooden handles made from antique theatrical lighting plugs.

I enjoy experimenting with my Hieronymus Machine very much. I can confidently say it WORKS, as a Radionics Machine is supposed to work. I have already had many amazing experiences with it, the kind that make one question the concepts we’ve been taught by mainstream science of how the universe works. But that is for another article…

I’m proud of my Hieronymus Radionic Analyzer as an artistic work, aside from its (meta)physical functions. In fact, I’ve come to realize that being a work of Art is an important part of that function. People ooh and aah when they see it. They *want* to be connected to it. When they hold the electrodes, they feel it. It has an *aura*. Without that aura, I don’t think Radionics would work. Art is how to generate that aura.

UPDATE:

Some folks have asked me about sources for the various parts I used to make the Hieronymus Machine. has some good sources, but some are just tagged “Surplus” or “eBay” which doesn’t give much info to go on. So here’s where I located the hard-to-find components.

• Garolite (bakelite) sheets:

McMaster-Carr:

The XX Grade Garolite is the paper/phenol composite material as recommended by Dr. Hieronymus. They will fill single-sheet orders. I used 1/8″ thickness for both the front panel and the stick-pad.

• 365pF, 180° air capacitors, brass binding posts, magnet wire:

Midnight Science:

Midnight Science is the website of the Xtal Set Society, a group of crystal radio hobbyists. They’re a small operation but they’re very friendly and helpful. Their air caps are custom made for use in high sensitivity radio equipment. Be sure you order the single-turn model!

• Air Variable Capacitor, clockwise-mesh version:

Modern Radio Labs:

These caps are within the usable range for building the Machine, and are built so that they are fully meshed when turned clockwise: just what you need if you don’t want “backwards” dial scales.

A hat tip to commenter Richard Thomas for the link!

• Precision potentiometer, 100k ohm, 3 watt:

Galco:

This was the place with the best prices I found for precision potentiometers.

• Transistors, MPF102 J-FET VHF Amplifiers

This is the EGC (MPF) direct replacement transistor for the 2N5670, which the techs at my local ‘old school’ radio electronics shop recommended. The 2N5670 is obsolete, but I did find one source in Hong Kong that specializes in obsolete parts – however, the minimum order is 24 units at US$6.00 each.

• Momentary (on)-on DPDT toggle switch

All Electronics:

This is for the Neutralize (Clear) switch. The double-pole (DP) version is hard to find, but necessary if you want to install the ultraviolet UV light source under the well. (If you don’t, just use one side of the switch’s solder posts.)

• Classic control knobs:

Leeds Radio: they carry a wide selection of classic radio knobs, including a knob with pointer for the Intensity control. You can also use a “chickenhead” knob for Intensity, with is what Hieronymus used in his machines. No matter what, you’ll still need to come up with metal pointers for the Rate knobs. (See below.)

• Glass beaker, 100 or 150ml:

Indigo Instruments:

These are standard laboratory beakers with the graduated scales printed on the side. They work perfectly well, but if you search and get lucky, you might find a beaker cup without markings.

• Metal clock hands:

Finding big knobs with metal pointers is not easy! I ended up having to make my own. I had a friend with an automated milling machine, but one could cut a pair of pointers out of thin brass sheet with strong, sharp scissors.

A friend who built a Machine simply used stiff solid-core hookup wires for pointers, with stripped ends wrapped around the shafts, the rest straightend and cut to the radius of the number dials. Workable but lacks a certain, um, elegance.

In my first version of the Machine, I used metal clock hands for the pointers on the Rate dials. The mounting holes are actually too small to fit over the air cap’s shaft, so I cut them off completely, leaving just the pointer arm itself, and soldered it to the knob bushing.

Almost any knob with set screws to hold it to the shaft have a metal bushing at the center where the shaft is mounted. The pointers MUST be electrically connected to the shaft, so they have to be soldered in contact with the bushing. But soldering to solid metal is not easy. Rough the surfaces with metal sandpaper first. Clock hands have an enamel coating on the metal, which needs to be sanded off anyway to make electrical contact. It’s best to glue the clock hand (or whatever pointer you use) to the back of the knob first to hold it firmly in physical contact with the bushing, then solder the point where they meet with as much heat as possible without melting the plastic of the knob (use a solder gun instead of an iron.) Using solder flux paste will also help make a solid solder joint.

Most everything else needed to build the Machine can be obtained at hobby shops, hardware stores and electronics shops (Radio Shack, Maplin’s, Dick Smith, etc.)

Important Note: if you build the Machine with the air capacitors listed above, you have to number the dials in a counter-clockwise direction as I did. Whatever caps you use, the rule is simple: when the rotors of the cap are fully UNmeshed, that is the zero (0) dial position. When they are fully ENmeshed, that is the one hundred (100) dial position. Calibrate your dials accordingly, or the machine will not work properly.

Try as I might, I can’t find a source for clockwise-enmeshed air caps. If anyone knows of a source, please leave a comment here with the information.

UPDATE II:

I had been noticing that the reactions I was getting from the stick pad seemed to be getting progressively less “precise” than when the Machine was new. The stick reactions were getting “wider”, i.e. the range of the Intensity settings where I got stick reactions was not as precise as a few months ago.

I got an idea what might be happening after a conversation with Ed Kelley of (Thanks, Ed!), who pointed out that while winding coils with crystal cores can add a lot of power to a radionics circuit, the problem is keeping them “clear” of accumulated energies. Ed’s design solution called for the crystals to be removable for cleansing.

Crystal users typically “clear” or “cleanse” crystals by rinsing them with spring water, rubbing with salt or by… exposure to sunlight! Assuming the cleansing power of sunlight comes from it’s powerful ultraviolet component, I figured I could cleanse the internal crystals using shortwave UV light. So I added two more ultraviolet lamps inside the box, mounted so that they beam light down the axis of each quartz crystal when the Clear switch is depressed. The additional circuit also completes an eloptic connection between the Clear switch sending the degaussing energy to the Well and the crystals. Of course, since the box itself is light-tight, I can’t see them working. But I know they worked before I sealed the box shut!

So far, a week after the modification, the stick reactions are tighter again.

UPDATE III:

People have asked about the UV lamps used in the Machine and where to get the “right” ones. I used a 360 nanoweber LED lamp in the witness well, which is about as shortwave as should be used in any light source that can be seen by the operator. The internal lamps are 352 nanoweber, and the radiation can be harmful to the eyes and skin, even with short exposure. So those lamps are sealed inside the light-tight box.

A source for both of these LEDs is:

360nw lamps:

352 nw lamps: (note: these are rather pricey.)

Share this: Like this: Like Loading... Related

workout routines dumbbells only     workout routines by day

Categories and tags